A Protocol Compiler for
Secure Sessions in ML

Ricardo Corin, Pierre-Malo Deniélou
INRIA—Microsoft Research Joint Centre
http://www.msr-inria.inria.fr/projects/sec/sessions/

http://www.msr-inria.inria.fr/projects/sec/sessions/

__

Programming distributed applications

 How to program networked independent sites?

- Little control over the runtime environment
=» Can we trust the network?

- Sites have their own code & security concerns
= Can we trust them?

« Communication abstractions simplify this task
- Basic communication patterns, e.g. RPCs

uer Response
® ™ e .

- They hide implementation details

y

(message format, routing, security,...)

__

Sessions

« Specification of a message flow between roles

- Graph with roles as nodes and labelled messages as edges
- Example: session with 3 parties, a loop and branches.

: Retract .
i ﬁaper:string .

Upload : string ok Withdraw

a

BadFormat : string Submit : string

Cfp : string

\\

- Active area for distributed programming
« A.k.a. protocols, or contracts, or workflows
» Pi calculus settings, web services, operating systems

- Gommon strategy: type systems enforce protocol compliance
“If every site program is well-typed, sessions follow their spec”

A\

Compiling session
to cryptographic protocols

« We extend ML with session declarations that express
message flows

 Then we compile session declarations to protocols that
shield our programs from any coalitions of remote peers

« We obtain that:

1. Well-typed programs always play their roles
—> functional result (uses ordinary ML-typechecking)

2. If a program uses sessions implemented with our
compiler, then remote sites can be assumed to play their
roles, without trusting their code

—> security theorem

__Z

Architecture

- _ N
Acompllel‘ S U NS S S NSNS EEEEENEEEENEEEEEEEEEE
from sessions | 2 Networking & Concrete | =
to ML = Cryptography Crypto | a
\ lllll?llIIIIIIIIIIIIIIIIII Illlll.
\r Session formally
Session P Cryptoprotocol verified code
_ declarations (in ML)
Application
code
Application
code ML compiler

with sessions .NET/OpenSSL) =

An extension of ML [concrete code
(.

__

Outline

|. Programming with Sessions
1. Language description
2. Session usage and interface generation
~ |l.Compiler internals

1. Security protocol
2. Module generation

__Z

A small session language

T ii= Payload types
unit | int | string base types
pi= Role processes
W(fii7is Pi)ick send
?fiiTi; Pi)i<k receive
©Hx.p recursion declaration
X recursion
0 end
i = Sessions
(ri:Ti = pi)icn initial role processes

A very simple RPC session:

Session RPC =

() Query () Response (> role client:int = |Query:string ; 7Response:int

role server:unit = 7Query:string ; |Response:int

A\

A Conference Management Session

Retract
®rc L
Cfp : string Upload : strin Ok
‘—>< : ——»Cc >
@ confman

BadFormat : string

Revise : string

1. Call for paper
2_ Upload Sequence '<Fina|Version : string @Accept - string

3. Revision loop

4. Decision & Rebuttal Loop

Global and Local sessions

Session CMS =
role pc:string =
| Cfp:string;

mu start.
?(Paper:string
+ Retract)

role author =
?Cfp:string;
mu start.
|Upload:string;
?(BadFormat:string;start
+ OK;!(Submit:string
+ Withdraw))

role confman =
mu start.
?Upload:string;
|(BadFormat:string;start
+ Ok;?(Submit:string;!Paper:string
+ Withdraw;!Retract))

Source file cms . session

Withdra

Cfp : string Ok

Upload : string
Cc

BadFormat : string

Withdraw

Upload : strin% (C) Ok
-

BadFormat : string

>

Retract »‘

Submit: string>

Paper : string

Retract
>

Submit : strin

Paper : string

__Z

Generated Interface

Session CMS =
role pc:string = (...)

role author =(...)

role confman =
mu start.
?Upload:string;
|(BadFormat:string;start
+ Ok;?(Submit:string;!Paper:string
+ Withdraw;!Retract)) >

Source file cms . session

Each role is compiled to a role function
“confman” that expects continuations
to drive the session (CPS style).

The continuations are constrained by
the generated types.

Retract
>

Withdraw

Upload : string Ok Submit: string>
> C) >
-

BadFormat : string

Paper : string

type msgi11 ={
hUpload : (principals -> string -> msg12)}
and msg12 =
| BadFormat of string * msg11
| Ok of unit * msg13
and msg13 = {
hSubmit : (principals -> string -> msg14);
hWithdraw : (principals -> unit -> msg15)}
and msg14 = Paper of string * unit
and msg15 = Retract of string * unit

type confman = principal -> msg11 -> unit

Generated file cMS.m11i

Role Programming

* Principal registration

- Give crypto and network information (public/private keys, IP, ...)

« CPS programming

type msgi1 ={
hUpload : (principals -> string -> msg12)}
and msg12 =
| BadFormat of string * msg11
| Ok of unit * msg13
and msg13 = {
hSubmit : (principals -> string -> msg14);
hWithdraw : (principals -> unit -> msg15)}
and msqg14 = Paper of string * unit
and msg15 = Retract of string * unit

type confman = principal -> msg11 -> unit

Generated file cMS . m1 i

open CMS

let handler_submission =
{ hSubmit = fun _s -> Paper(s, ()) ;
hWithdraw = fun _ () -> Retract((), ()) }

let rec handler_paper prins draft =
if String.length draft > 12
then BadFormat("Make it shorter!",
{hUpload = handler_paper})
else Ok((), handler_submission)

let result =
confman "bob" {hUpload = handler_paper}

User code foo.ml

Ordinary ML type-checking provides functional guarantees!

__Z

Implementability conditions

« We want session integrity.
« Some sessions are always vulnerable:

Withdraw @

A\

» We detect them and rule them out
- They can also be turned into safe sessions with extra messages:

Paper : string »‘

Submit : string

Withdraw

O

_

Protocol outline & (Potential) attacks

Only 2,3. 4. Bad author
once! Replays uploads without
(net attack) Cfp
Cfp : string

Upload : string
»@
[1.Session
confusion

BadFormat : string
Use unique session id = hash(session decl + nonce N + principals)
Use cache for initial session messages
Use logical clock for loop session messages

Sign labels and session ids
=» What evidence do we forward?

In subsequent loops,
confman needs to
check only upload

o=

A\

_Z

Efficient Forwarding
Two visible sequencei
> Cfp - Upload
> Upload

Cfp : string Upload : string
1) ~(a, ~©

BadFormat : string

Visibility =
minimum information needed to update state of local role

« Can be computed statically from the session graph
« Any less information would break integrity

* More work to the compiler = less runtime tests

* This actually simplifies formal proofs!

__

Session Integrity, Formalized

« For any run of any choice of honest principals running roles of
compiled session declarations plus any coalition of dishonest
principals + network attacker

=> there exist valid paths in the session declarations
that are consistent with all the messages sent and
received by the honest principals

 Formalized as two semantics (previous work):
- one “ideal” with hardwired sessions,
- one “real” using our compiler and symbolic libraries

« We show a may-testing simulation from the real to the ideal

_

Compilation outline

« Generation of the global graph
- Well-formed and Implementability conditions
- Visible sequence generation

=+ For each role, generation of the local side of the crypto

protocol
Generated Module
Original Wired Network
User Froxy Data e
Code Sl Handlers Crypto
Libs

_

Wired Data handling

* Receive functions (receiveWirednode) : Message analysis

- Receive the message on the network, decompose, check session id
- Match label against possible incoming messages
- Check signatures (using visibility) and logical time-stamps

- Update local store and logical clock

A\

- Check against the cache

« Send functions (sendWired/abel): Message generation
- Session id, msg headers (session id+sender id+receiver id)
- Marshall payload

- Build signature, update the local store and logical clock

- Send the full message on the network

__

Proxy code

Links the user code with sendWired/receiveWired functions

type msgi1 ={
hUpload : (principals -> string -> msg12)}
and msg12 =
| BadFormat of string * msg11
| Ok of unit * msg13
and msg13 = {
hSubmit : (principals -> string -> msg14);
hWithdraw : (principals -> unit -> msg15)}
and msg14 = Paper of string * unit
and msg15 = Retract of string * unit

type confman = principal -> msg11 -> unit

Generated file cMS.m11i

(...) (* header sending *)
and confman_msg12 (st:state) : msg12 -> unit =
function
| Ok(x,next) ->
let newSt = sendWiredOk host 1 (WiredOk(st, x)) in
confman_msg13 newSt next
| BadFormat(x,next) ->
let newSt =
sendWiredBadFormat host 1 (WiredBadFormat(st, x)) in
confman_msg11 newSt next
(* header receiving *)
and confman_msg11 (st:state) : msg11 -> unit =
function handlers ->
let r = receiveWired11 1 host st () in
match r with
| WiredUpload (newSt, x) ->
let next = handlers.hUpload newSt.prins x in
confman_msg12 newSt next

(..))

Generated file cMS.m1

Benchmark

Retract
(e) -p

Cfp : string

string

A\

500 iterations in each loop
(4000 messages in total) Shepherd : string

No crypto crypto openssl @
1st loop 0.23s 2.95s
2" loop 0.46s 6.11s
3 loop 0.24s 2.98s

total 0.94s 12.04s 8.38s

__

Conclusion & Future Work

Cryptographic protocols can sometimes be derived
(and verified) from application security requirements
- Strong, simple security model
- Safer, more efficient than ad hoc design & code

Improvements to session expressiveness
- Enable access control over payloads

* Roles can deliver data to other roles securely
- Enable dynamic principal selection

* As opposed to the initiator picking everyone
Improve performance (symmetric cryptography?)

Thanks to
Karthikeyan Bhargavan, Cédric Fournet, James J. Leifer,
Jean-Jacques Lévy

A\

Try our session compiler!

http://www.msr-inria.inria.fr/projects/sec/sessions/

